Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.734
Filtrar
1.
Front Immunol ; 15: 1355315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558807

RESUMO

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Assuntos
Síndrome de Ativação Macrofágica , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de IgG/genética , Síndrome de Ativação Macrofágica/genética , Fagocitose/genética , Interleucina-12
2.
Front Immunol ; 15: 1343602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455048

RESUMO

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/genética , Leishmania infantum/genética , Receptores de IgG/genética , Interleucina-12 , Fator de Necrose Tumoral alfa , Nucleotídeos , Isoformas de Proteínas , Variação Genética , Imunoglobulina G
3.
Eur J Immunol ; 54(4): e2350659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314895

RESUMO

Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Cartilagem/patologia , Complemento C5/genética , Imunoglobulina G , Receptores de IgG/genética
4.
J Immunol Methods ; 526: 113628, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38331313

RESUMO

The importance of structural genetic variants, such as copy number variations (CNVs), in modulating human disease is being increasingly recognized. Several clinical conditions require investigation of human neutrophil antigen (HNA-1), which is encoded by the Fc gamma receptor IIIb gene (FCGR3B), including suspicion of neutropenia, infections, and proactive testing of blood component donors to reduce the potential risk in transfusion. In this study, we compared real-time quantitative polymerase chain reaction (qPCR) with two digital PCR (dPCR) platforms, namely droplet digital PCR and an array-based platform, to determine copy numbers (CNs) in FCGR3B. We initially tested 400 anonymous blood donors with qPCR using a commercially available TaqMan probe assay (Applied Biosystems) on a Quant Studio 12 Flex. CNs was determined for all 400 tested individuals with CNs ranging from zero to four. Zero copies were detected in 0.2% (1/400), one copy was detected in 3.8% (15/400), two copies were detected in 87.8% (351/400), three copies were detected in 8.0% (32/400), and four copies were detected in 0.2% (1/400) of tested individuals. From this cohort, we selected 32 donors with CNs from zero to four for analyses with Digital Real-Time PCR (dPCR) using Lab on an array (LOAA) on an On-Point analyzer from Optolane Technologies Inc. and the Droplet Digital PCR (ddPCR) platform from Bio-Rad Laboratories. We compared the obtained CNs of FCGR3B on the three platforms and found full concordance between the CNs obtained. We therefore conclude that all three platforms can be used for quantification of CNs for FCGR3B, and although dPCR has some advantages over qPCR, it was not necessary for reliably estimating CNs of the FCGR3B gene.


Assuntos
Variações do Número de Cópias de DNA , Receptores de IgG , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de IgG/genética , Estudos de Casos e Controles , Proteínas Ligadas por GPI/genética
5.
J Immunol ; 212(7): 1196-1206, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380986

RESUMO

FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.


Assuntos
Linguado , Receptores de IgG , Animais , Receptores de IgG/genética , Receptores Fc , Sistema Imunitário , Citocinas
6.
J Proteome Res ; 23(3): 1088-1101, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363599

RESUMO

Fc γ-receptors (FcγRs) on leukocytes bind immunoglobulin G (IgG) immune complexes to mediate effector functions. Dysregulation of FcγR-mediated processes contributes to multiple inflammatory diseases, including rheumatoid arthritis, lupus, and immune thrombocytopenia. Critically, immunoregulatory N-glycan modifications on both FcγRs and IgGs alter FcγR-IgG binding affinity. Rapid methods for the characterization of N-glycans across multiple Fcγ receptors are needed to propel investigations into disease-specific contributions of FcγR N-glycans. Here, we utilize nanoliquid chromatography tandem mass spectrometry (nLC-MS/MS) to characterize FcγR glycosylation and report quantitative and site-specific N-glycan characterization of recombinant human FcγRI, FcγRIIIA V158, and FcγRIIIA F158 from CHO cells and murine FcγRI, FcγRIII, and FcγRIV from NS0 cells. Data are available via ProteomeXchange with identifier PXD043966. Broad glycoform distribution (≥30) was observed at mouse FcγRIV site N159 and human FcγRIIIA site N162, an evolutionarily conserved site. Further, mouse FcγRIII N-glycopeptides spanning all four predicted N-glycosylation sequons were detected. Glycoform relative abundances for hFcγRIIIA V/F158 polymorphic variants are reported, demonstrating the clinical potential of this workflow to measure differences in glycosylation between common human FcγRIIIA allelic variants with disease-associated outcomes. The multi-Fcγ receptor glycoproteomic workflow reported here will empower studies focused on the role of FcγR N-glycosylation in autoimmune diseases.


Assuntos
Receptores de IgG , Espectrometria de Massas em Tandem , Humanos , Animais , Camundongos , Cricetinae , Glicosilação , Receptores de IgG/genética , Cricetulus , Imunoglobulina G/genética , Polissacarídeos
7.
Rev Assoc Med Bras (1992) ; 70(2): e20230872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422319

RESUMO

OBJECTIVE: The purpose of this study was to assess the association between clinical, laboratory, and functional analyses and polymorphism in the FCGR3A gene in individuals with functional NK cell deficiency. METHODS: A total of 15 functional NK cell deficiency patients and 10 age-matched healthy controls underwent NK cell subgroup, cytotoxicity, and FCGR3A whole-exome analysis with next-generation sequencing. RESULTS: Three different NK cell subsets (CD56brightCD16neg, CD56brightCD16int, and CD56dimCD16hi) were identified. No statistically significant difference was found in the ratio of CD56brightCD16neg cells between patients and controls. CD56brightCD16int and CD56dimCD16hi ratios were found to be significantly lower in patients. As a result of NK cell cytotoxicity analysis, a proportional decrease of K562 amount between patients and controls was found to be statistically significant (p<0.001). In the FCGR3A whole-exome analysis, all patients were found to be homozygous mutant for the c.526G > T (p.V176F) in exon 4, while three patients were homozygous wild type and 12 patients were heterozygous for the c.197T>A (p.L66H) in exon 3. CONCLUSION: In this study, a group of pediatric patients with suspected functional NK cell deficiency were evaluated and the findings indicated that NK subsets, cytotoxicity results, and FCGR3A gene polymorphism were found to be correlated with the clinical features. We conclude that this kind of study might contribute to follow-up the patients in time.


Assuntos
Células Matadoras Naturais , Polimorfismo Genético , Humanos , Criança , Heterozigoto , Receptores de IgG/genética
8.
Bioengineered ; 15(1): 2302246, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38214443

RESUMO

Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.


Assuntos
Imunoglobulina G , Receptores de IgG , Imunoglobulina G/genética , Receptores de IgG/genética , Antígenos CD40/genética , Ligante de CD40/genética , Engenharia Genética
9.
Nat Commun ; 15(1): 319, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296975

RESUMO

Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.


Assuntos
Predisposição Genética para Doença , Escleroderma Sistêmico , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Receptores de IgG/genética , 60488 , Escleroderma Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Fatores Reguladores de Interferon/genética , Loci Gênicos
10.
Nat Rev Cancer ; 24(1): 51-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062252

RESUMO

The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.


Assuntos
Neoplasias , Receptores de IgG , Humanos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Imunoglobulina G/metabolismo , Imunomodulação , Imunoterapia , Neoplasias/terapia
11.
J Pathol ; 262(2): 161-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929639

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Penfigoide Bolhoso , Animais , Camundongos , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos não Fibrilares/genética , Camundongos Endogâmicos C57BL , Autoanticorpos , Imunoglobulina G
13.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958695

RESUMO

Antibodies play a crucial role in activating protective immunity against malaria by interacting with Fc-gamma receptors (FcγRs). Genetic variations in genes encoding FcγRs can affect immune cell responses to the parasite. In this study, our aim was to investigate whether non-coding variants that regulate FcγR expression could influence the prevalence of Plasmodium falciparum infection. Through bioinformatics approaches, we selected expression quantitative trait loci (eQTL) for FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B genes encoding FcγRs (FCGR), in whole blood. We prioritized two regulatory variants, rs2099684 and rs1771575, located in open genomic regions. These variants were identified using RegVar, ImmuNexUT, and transcription factor annotations specific to immune cells. In addition to these, we genotyped the coding variants FCGR2A/rs1801274 and FCGR2B/rs1050501 in 234 individuals from a malaria-endemic area in Burkina Faso. We conducted age and family-based analyses to evaluate associations with the prevalence of malarial infection in both children and adults. The analysis revealed that the regulatory rs1771575-CC genotype was predicted to influence FCGR2B/FCGR2C/FCGR3A transcripts in immune cells and was the sole variant associated with a higher prevalence of malarial infection in children. In conclusion, this study identifies the rs1771575 cis-regulatory variant affecting several FcγRs in myeloid and neutrophil cells and associates it with the inter-individual capacity of children living in Burkina Faso to control malarial infection.


Assuntos
Malária Falciparum , Receptores de IgG , Adulto , Criança , Humanos , Burkina Faso/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Família Multigênica , Plasmodium falciparum/genética , Receptores de IgG/genética
14.
Neurochem Int ; 171: 105638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923297

RESUMO

Aberrant microglial activation is a prominent feature of neuroinflammation, which is implicated in the pathogenesis of neurological disorders. Fc receptor common γ-chain (FcRγ), one of the two immunoreceptor tyrosine-based activation motif-bearing adaptor proteins, is abundantly expressed in microglia. It couples with different receptors, such as receptors for the Fc portion of IgG. In this study, we observed increased FcRγ expression along with increased IgG-binding during acute neuroinflammation triggered by MPTP intoxication, where adaptive immune responses should not be involved. Notably, FcRγ was expressed not only in the cell membrane but also in the cytoplasm in the activated microglia. FcRγ deficiency exacerbated microglial activation, pro-inflammatory factor upregulation, nigral dopaminergic neuronal loss and motor deficits, implicating a beneficial role of FcRγ in this model. Blockade of Fcγ receptor ligation by IgG in mice by Endoglycosidase S treatment, a bacterial endo-ß-N-acetylglucosaminidase cleaving specifically the Asn297-linked glycan of IgG, or by using the mice deficient in mature B cells (muMT) with IgG production defects, did not show similar phenotypes to those observed in FcRγ-deficient mice, indicating that the beneficial effect mediated by FcRγ did not depend on FcγR ligation by IgG. Further, FcRγ knockout aggravated the expression and activation of STAT1 in microglia, suggesting FcRγ modulated neuroinflammation by dampening STAT1 signaling. Collectively, these results revealed that FcRγ-associated receptors could function as negative regulators of neuroinflammation and dopaminergic neurodegeneration.


Assuntos
Receptores Fc , Receptores de IgG , Camundongos , Animais , Receptores de IgG/genética , Receptores de IgG/metabolismo , Camundongos Knockout , Doenças Neuroinflamatórias , Imunidade , Imunoglobulina G , Camundongos Endogâmicos C57BL
15.
Proc Natl Acad Sci U S A ; 120(44): e2314905120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871218

RESUMO

Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Animais , Camundongos , Hemaglutininas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Orthomyxoviridae/metabolismo , Influenza Humana/prevenção & controle , Vacinação , Imunoglobulina G , Epitopos
16.
Ann Clin Transl Neurol ; 10(12): 2413-2420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804003

RESUMO

Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/genética , Aquaporina 4/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoglobulina G , Receptores de IgG/genética
17.
Medicine (Baltimore) ; 102(37): e35084, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713871

RESUMO

To explore the expression and prognosis of Fc fragment of IgG low affinity IIb receptor (FCGR2B) in glioma and its relationship with immune microenvironment, so as to provide potential molecular targets for the treatment of glioma. We analyzed the gene expression of FCGR2B using the Cancer Genome Atlas database, Chinese Glioma Genome Atlas, Gene Expression Omnibus database and other glioma related databases. Moreover, we generated survival receiver operating characteristic curve, carried out univariate and multivariate Cox analysis and nomograph construction, and analyzed the relationship between FCGR2B and prognosis. According to the median of FCGR2B gene expression value, the differential expression analysis was carried out by high and low grouping method, and the gene ontology, Kyoto encyclopedia of genes and genomes, and gene set enrichment analysis enrichment analysis were carried out to explore the possible mechanism. Then, the correlation between immune score of glioma and prognosis, World Health Organization grade and FCGR2B expression was analyzed. Finally, the correlation between FCGR2B expression and the proportion of tumor infiltrating immune cells, immune checkpoints, tumor mutation load and immune function was analyzed. The expression of FCGR2B in gliomas was higher than that in normal tissues and was associated with poor prognosis. Independent prognostic analysis showed that FCGR2B was an independent prognostic factor for glioma. The analysis of gene ontology and gene set enrichment analysis showed that FCGR2B was closely related to immune-related functions. The analysis of immune scores and prognosis, World Health Organization grade and FCGR2B expression in gliomas indicated that patients with high immune scores had significantly poorer overall survival and higher tumor pathological grade. In addition, immune scores were significantly positively correlated with the expression of FCGR2B. The analysis of tumor infiltrating immune cells suggested that the expression level of FCGR2B affected the immune activity of TME. In addition, the expression of FCGR2B was positively correlated with almost all immune checkpoint molecules including CD28, CD44, TNFSF14, PDCD1LG2, LAIR1, and CD48 and was significantly positively correlated with tumor mutation load. All immunobiological functions of the high expression group of FCGR2B were significantly inhibited. FCGR2B may play an important role in the occurrence, development and invasion of tumor by influencing the tumor microenvironment of immunosuppression. FCGR2B may be an important target for the treatment of glioma.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Povo Asiático , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Antígenos CD28 , Glioma/genética , Glioma/imunologia , Prognóstico , Receptores de IgG/genética , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Immunol Cell Biol ; 101(8): 746-765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37575046

RESUMO

Alcohol can induce a leaky gut, with translocation of microbial molecules from the gut into the blood circulation. Although the contribution of inflammation to organ-mediated damage in lupus has been previously demonstrated, the mechanistic roles of alcohol consumption in lupus activation are not known. Herein, we tested the effects of 10-week lasting alcohol administration on organ damages and immune responses in 8-week-old lupus-prone Fc gamma receptor IIb-deficient (FcγRIIb-/- ) mice. Our study endpoints were evaluation of systemic inflammation and assessment of fecal dysbiosis along with endotoxemia. In comparison with alcohol-administered wild-type mice, FcγRIIb-/- mice demonstrated more prominent liver damage (enzyme, histological score, apoptosis, malondialdehyde oxidant) and serum interleukin(IL)-6 levels, despite a similarity in leaky gut (fluorescein isothiocyanate-dextran assay, endotoxemia and gut occludin-1 immunofluorescence), fecal dysbiosis (microbiome analysis) and endotoxemia. All alcohol-administered FcγRIIb-/- mice developed lupus-like characteristics (serum anti-dsDNA, proteinuria, serum creatinine and kidney injury score) with spleen apoptosis, whereas control FcγRIIb-/- mice showed only a subtle anti-dsDNA. Both alcohol and lipopolysaccharide (LPS) similarly impaired enterocyte integrity (transepithelial electrical resistance), and only LPS, but not alcohol, upregulated the IL-8 gene in Caco-2 cells. In macrophages, alcohol mildly activated supernatant cytokines (tumor necrosis factor-α and IL-6), but not M1 polarization-associated genes (IL-1ß and iNOS), whereas LPS prominently induced both parameters (more prominent in FcγRIIb-/- macrophages than wild type). There was no synergy in LPS plus alcohol compared with LPS alone in both enterocytes and macrophages. In conclusion, alcohol might exacerbate lupus-like activity partly through a profound inflammation from the leaky gut in FcγRIIb-/- mice.


Assuntos
Endotoxemia , Receptores de IgG , Animais , Humanos , Camundongos , Células CACO-2 , Disbiose , Etanol , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Receptores de IgG/genética
19.
Sci Rep ; 13(1): 14211, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648784

RESUMO

Fat intake is among the most significant triggers for symptom development in patients with irritable bowel syndrome (IBS). Nevertheless, long-term restriction in fatty foods ingestion may lead to nutritional inadequacies. This study aimed to identify the crucial genes involved in lipid-induced gastrointestinal symptoms, contributing to helping IBS patients regulate fat. The clinical characteristics of the subjects were collected by questionnaire investigation and analyzed using multivariate logistic regression. Differentially expressed genes (DEG) and signaling pathways were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. ImmuInfiltration and CIBERSORT packages evaluated small intestine immune cell infiltration. Random forest and SVM-RFE algorithms were used to select hub genes. A receiver operating characteristic curve was used to access the diagnostic significance of each hub gene. Gene Set Enrichment Analysis (GSEA) was performed to identify hub genes' molecular processes in IBS development after lipid infusion. IBS patients' risk, severity, and quality of life increased with fat intake. In total, 116 robust DEGs were identified in IBS patients after lipid infusion using the GSE166869 dataset and were mainly clustered in the immune and inflammatory pathways. IBS patients had greater Neutrophils, CD4+ T cells, and M1 Macrophages than healthy controls. Furthermore, infiltration levels of Neutrophils and resting memory CD4+ T cells were inversely related to the expression of hub genes (IGKV1D-43, IGKV1-12, APOD, FCGR2A and IGKV2-29). After lipid infusion, GSEA results of each hub gene indicated the relevance of proinflammatory pathways in IBS pathogenesis. After verification, only APOD and FCGR2A were stably downregulated in small intestinal mucosa and plasma of IBS patients. The area under the curve of APOD combined with FCGR2A expression was 0.9. APOD and FCGR2A may be promising biomarkers for IBS diagnosis and lipid-sensitive IBS patients. Their potential roles in the immune microenvironment of the small intestinal mucosa may provide a vital clue to IBS precision therapy.


Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/genética , Qualidade de Vida , Algoritmos , Ontologia Genética , Lipídeos , Receptores de IgG/genética
20.
Eur J Immunol ; 53(12): e2350454, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621208

RESUMO

Human immune system (HIS) mice provide a model to study human immune responses in vivo. Currently available HIS mouse models may harbor mouse Fc Receptor (FcR)-expressing cells that exert potent effector functions following administration of human Ig. Previous studies showed that the ablation of the murine FcR gamma chain (FcR-γ) results in loss of antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in vivo. We created a new FcR-γ-deficient HIS mouse model to compare host (mouse) versus graft (human) effects underlying antibody-mediated immune responses in vivo. FcR-γ-deficient HIS recipients lack expression and function of mouse activating FcRs and can be stably and robustly reconstituted with human immune cells. By screening blood B-cell depletion by rituximab Ig variants, we found that human FcγRs-mediated IgG1 effects, whereas mouse activating FcγRs were dominant in IgG4 effects. Complement played a role as an IgG1 variant (IgG1 K322A) lacking complement binding activity was largely ineffective. Finally, we provide evidence that FcγRIIIA on human NK cells could mediate complement-independent B-cell depletion by IgG1 K322A. We anticipate that our FcR-γ-deficient HIS model will help clarify mechanisms of action of exogenous administered human antibodies in vivo.


Assuntos
Receptores Fc , Receptores de IgG , Humanos , Camundongos , Animais , Receptores de IgG/genética , Imunoglobulina G , Citotoxicidade Celular Dependente de Anticorpos , Macrófagos , Proteínas do Sistema Complemento , Imunidade Adaptativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...